Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(37): 25738-25751, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37649661

RESUMO

The WO3 and WO3:Pr3+ particles were successfully synthesized by the co-precipitation method. The XRD analysis with Rietveld refinement revealed the formation of a monoclinic phase for WO3 and for doped samples, this result was later confirmed by Raman spectroscopy studies. The presence of Pr3+ in the WO3 crystalline lattice induced structural and optical changes in the particles, increasing the crystallite size, distorting the clusters (shortening of the W-O bonds), favoring the crystallinity and changing the optical gap. The predominant morphology of the particles of WO3 and WO3:Pr3+ obtained was nanocubes constituted by the superposition of plates of nanometric thicknesses. The photoluminescence of WO3 and WO3:Pr3+ was produced by the existence of surface defects in the particles. The increase in the concentration of Pr3+ promoted an increase in the intensity of PL, due to the increase in the rate of recombination of electron/hole charges. The WO3 sample exhibited emission in the white region due to the adjustment of simultaneous electronic transitions in the blue, green and red regions, characteristic of the broadband spectrum. The interval of the 2.65 eV gap band and the high efficiency in the separation of the photogenerated charges (e-/h+) with the low recombination rate contributed to the photocatalytic degradation of Crystal Violet (CV) by the catalyst. The WO3:4% Pr3+ sample showed the best photocatalytic efficiency, degrading 73% of the CV dye in 80 minutes. This result was associated with a reduction in particle size and density of oxygen vacancies on the material surface.

2.
Phys Chem Chem Phys ; 22(44): 25876-25891, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156308

RESUMO

In this work PbMoO4 and Pb1-2xCaxSrxMoO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions have been successfully prepared, for the first time, by a simple co-precipitation method and the as-synthesized samples were subjected to a water-based reflux treatment. Structural characterization of these samples was performed using X-ray diffraction with Rietveld refinement analysis and Raman spectroscopy. Their optical properties were investigated by UV-Vis absorption spectroscopy and PL emissions, and the photocatalytic activity of the as-synthesized samples for the degradation process of Rhodamine B has been demonstrated. The surface structure and morphologies were characterized by field emission scanning electron microscopy. To complement and rationalize the experimental results, the geometry, electronic structures, and morphologies of as-synthesized samples were characterized by first-principles quantum-mechanical calculations at the density functional theory level. By using Wulff construction, based on the values of the surface energies for the (001), (100), (110), (111), (011) and (112) surfaces, a complete map of the available morphologies for PbMoO4 was obtained and a good agreement between the experimental and theoretical predicted morphologies was found. The structural and electronic changes induced by the substitution of Pb by Ca and Sr allow us to find a relationship among morphology, the electron-transfer process at the exposed surfaces, optical properties, and photocatalytic activity. We believe that our results offer new insights regarding the local coordination of superficial Pb/Ca/Sr and Mo cations (i.e., clusters) on each exposed surface of the corresponding morphology, which dictate the photocatalytic activities of the as-synthesized samples, a field that has so far remained unexplored. The present study, which combines multiple experimental methods and first-principles calculations, provides a deep understanding of the local structures, bonding, morphologies, band gaps, and electronic and optical properties, and opens the door to exploit the electrical, optical and photocatalytic activity of this very promising family of materials.

3.
Ultrason Sonochem ; 56: 14-24, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101248

RESUMO

In the present work, Sr0.9-x-y-zCa0.1In2O4:(xEu3+, yTm3+, zTb3+) particles were synthesized by the ultrasonic spray pyrolysis (USP) method to obtain a single-phase white phosphorus formed by six different cations in solution within the lattice (superstructure). The samples were also structurally and morphologically characterized by X-ray diffraction (XRD) techniques and by field emission scanning electron microscopy (FE-SEM). The photoluminescent behavior and the characteristics of the emitted colors were studied by the variation in the co-doping of the rare earth elements. The Sr0.9Ca0.1In2O4 sample showed a near blue color emission, but all co-doped samples showed emission in white with very close chromaticity coordinates to the standard white (x = 0.33 and y = 0.33). The Tm3+ → Tb3+ (ET1), Tm3+ → Eu3+ (ET2) and Tb3+ → Eu3+ (ET3) Energy Transfers were proposed and are considered necessary for adjusting and controlling the desired color properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...